
2019-02-05 

1 

 

Contents 
6 Root finding ................................................................................................................................................................ 1 

6.1 A linear equation and a system of linear equations.............................................................................................. 1 

6.2 A non-linear equation .......................................................................................................................................... 3 

6.2.1 The bisection method .................................................................................................................................... 4 

6.2.2 The bracketed secant method (or false position method).............................................................................. 7 

6.2.3 Newton’s method ........................................................................................................................................ 12 

6.2.4 The secant method ...................................................................................................................................... 16 

6.2.5 Examples .................................................................................................................................................... 17 

6.2.6 Summary of these methods ......................................................................................................................... 24 

6.2.7 Problems ..................................................................................................................................................... 24 

6.2.8 Newton’s method and fractals (aside) ......................................................................................................... 25 

6.3 Systems of non-linear equations ........................................................................................................................ 26 

6.3.1 Problems ..................................................................................................................................................... 31 

Acknowledgments ....................................................................................................................................................... 33 

Appendix A: Statistical error ....................................................................................................................................... 34 

 

6 Root finding 
We will now look at solving algebraic equations. In general, this reduces to a root-finding problem, for in general, if 

we wish to find a solution to f(x) = g(x), this is equivalent to finding a root of the expression f(x) – g(x). We will 

briefly review how to solve a simple linear equation and a system of linear equations, and then we will look at four 

techniques for finding a root of a non-linear equation, including: 

1. the bisection method, 

2. the constrained secant method, 

3. Newton’s method, and 

4. the secant method. 

We will end by looking how we can use Newton’s method to find an approximation to the root of a system of non-

linear equations. 

6.1 A linear equation and a system of linear equations 
The only algebraic equation that we can solve with any confidence is the simple equation 

ax = b, 

which is equivalent to finding a root of ax – b. Finding a unique solution is guaranteed so long as a ≠ 0, and if a = 0, 

then either there are infinitely many solutions if b = 0 and no solutions if a ≠ 0.  
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We have already discussed the techniques for solving a system of linear equations in a numerically stable manner; 

namely, to apply partial pivoting. Again, solving the following system of non-linear equations 

ax by c

dx ey f

 

 
  

is equivalent to finding a simultaneous root of the two functions 

ax by c

dx ey f

 

 
. 

Thus, if you were to find a simultaneous root of the algebraic expressions, 

 

 

, 3 7 1

, 5 4

f x y x y

g x y x y

  

  
 

finding a simultaneous solution to f(x, y) = 0 and g(x, y) = 0 is equivalent to solving  

3 7 1

5 4

x y

x y

  

  
. 

We will therefor proceed to finding solutions to a non-linear equation. 
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6.2 A non-linear equation 
Suppose we have a non-linear equation f(x) = g(x), which is essentially a root-finding problem for the algebraic 

expression f(x) – g(x). In calculus, you determined that if you had an approximation x in the vicinity of the root, you 

could determine that the tangent to the function at x is given by the expression 

      1

0 0 0f x x x f x  . 

This tangent line is shown in this image: 

 

As you may suspect, if we are in the vicinity of a root, the root of this tangent line will be close to the root of the 

actual function: 

 

We can find the root of the tangent line by solving for 

      
      

 
   

 
   

1

0 0 0

1

0 0 0

0

0 1

0

0

0 1

0

0f x x x f x

f x x x f x

f x
x x

f x

f x
x x

f x

  

  

  

 

 

Thus, the root of this tangent line is 
 

   
0

0 1

0

f x
x

f x
 . This can be our next approximation to the root. This was all 

covered in first-year calculus; however, let us now examine the error. To begin, however, we will look at a different 

technique: the bisection method. 
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6.2.1 The bisection method 
If we start with a continuous function f defined on an interval [a, b], then if f(a) and f(b) have opposite signs, we 

know by the intermediate value theorem that there must be a point on (a, b) that is a root. 

We could approximate the root by the mid-point; however, it is probably better to just approximate the root by 

whichever |f(a)| or |f(b)| is smaller in absolute value. 

To improve our approximation, we could apply the same rule as in binary search: select the mid-point, only now, not 

the mid-point of the array, but the mid-point of the interval [a, b]. 

Thus, 

1. let 
2

a b
c


 , 

2. in the unlikely case that   0f c  , c is a root and we are finished, 

3. otherwise, 

a. if f(a) and f(c) the same sign, update a as a root is on the interval [c, b], 

b. otherwise, a root is on the interval [a, c]. 

6.2.1.1 Implementation issues 
Now, when we implement the bisection method in C++, we need to know when to stop. 

First, because we are assuming that we are looking for a root of a function f, then if we have an approximation to a 

root x, then |f(x)| must be small, so we allow the user to specify this constraint: the user can specify abs so that 

|f(x)| < abs. Next, given a and b together with f(a) and f(b), which we have already calculated, should we return a or 

b or perhaps the mid-point 
2

a b
. If we restrict ourselves to returning only a or b, then we should return whichever 

has a smaller corresponding absolute value:  if |f(a)| < |f(b)|, return a; otherwise, return b. Because we know nothing 

about |f(c)|, if we were to return c, it may be a worse approximation than either a or b, and if we’re calculating f(c) to 

avoid this issue, we might as well continue one more iteration of the bisection method. 

Another problem is we want to be close to the root, but we are simply creating a sequence of approximations: how 

do we know when we are close enough to the root? To solve this, we will say that we are close enough to the root if 

the distance between the end-points is close; that is, b – a < step for an step specified by the user. Now, we don’t 

have to keep all approximations, only the current and the most previous approximation. 
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6.2.1.2 Implementation in C++ 

We could now write an algorithm that finds such a root: 
#include <cassert> 
#include <stdexcept> 
#include <iostream> 
 
// Function declarations 
int sign( double x ); 
double bisection_method( double f( double x ), double a, double b, 
                         double eps_step, double eps_abs, 
                         unsigned int max_iterations ); 
 
// Function definitions 
int sign( double x ) { 
    return (0.0 < x) - (x < 0.0); 
} 
 
double bisection_method( double f( double x ), double a, double b, 
                         double eps_step, double eps_abs, 
                         unsigned int max_iterations ) { 
    assert( a < b ); 
    double fa{f(a)}; 
    double fb{f(b)}; 
    double f_min{std::min(std::abs(fa), std::abs(fb))}; 
    unsigned int iterations{0}; 
 
    if ( fa == 0.0 ) { 
        std::clog << "Number of iterations: 0" << std::endl; 
        return a; 
    } else if ( fb == 0.0 ) { 
        std::clog << "Number of iterations: 0" << std::endl; 
        return b; 
    } 
 
    if ( sign( fa ) == sign( fb ) ) { 
        throw std::invalid_argument( "f(a) and f(b) have the same sign." ); 
    } 
 
    while ( ((b - a) >= eps_step) && (f_min >= eps_abs) ) { 
        ++iterations; 
 
        if ( iterations > max_iterations ) { 
            throw std::range_error( "Exceeded the maximum number of iterations" ); 
        } 
 
        double c{(a + b)/2}; 
        double fc{f(c)}; 
 
        f_min = std::min( f_min, std::abs( fc ) ); 
 
        if ( fc == 0.0 ) { 
            std::clog << "Number of iterations: " << iterations << std::endl; 
            return c; 
        } else if ( sign( fa ) == sign( fc ) ) { 
            // 'f(a)' and 'f(c)' have the same sign 
            a = c; 
            fa = fc; 
        } else { 
            // 'f(c)' and 'f(b)' have the same sign 
            assert( sign( fc ) == sign( fb ) ); 
            b = c; 
            fb = fc; 
        } 
    } 
 
    std::clog << "Number of iterations: " << iterations << std::endl; 
    return ( std::abs( fa ) < std::abs( fb ) ) ? a : b; 
} 
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You can validate this algorithm with a test run: 

#include <cmath> 
#include <iostream> 
 
// Function declarations 
// ... 
int main(); 
 
// Function definitions 
 
double y( double t ) { 
        return 2.3*std::exp(-t) – 5.0*t*std::exp(-t); 
}  
 
int main() { 
        std::cout.precision( 16 ); 
 
        std::cout << "Bisection method" << std::endl; 
        std::cout << bisection_method( std::cos, 1.0, 2.0, 1e-6, 1e-6, 100 ) 
                  << std::endl; 
        std::cout << bisection_method( y,        0.0, 0.5, 1e-6, 1e-6, 100 ) 
                  << std::endl; 
 
        return 0; 
} 
     
 

The output is: 

Bisection method 
Number of iterations: 18 
1.570796966552734 
Number of iterations: 19 
0.4600000381469727 
 

The correct answer for the first to16 decimal digits is 1.570796326794897, so the relative error 0.00001999 %, and 

with each iteration, the error reduces by a factor of two. In the second case, the correct answer is 0.46, so you can 

see the error by inspection. 

Now, if we know the interval is [a, b] and the signs of the function evaluated at the end-points differ, then we could 

state that the error is h = |b – a|. With each iteration, the error drops by a factor of two, so after one iteration, the 

error is 0.5h. Thus, we can say that the error is O(h). 

We will now refine this technique, by using a better guess than just the mid-point.  
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6.2.2 The bracketed secant method (or false position method) 
When searching a sorted array of size n, it is usual to apply a binary search, which is analogous to the bisection 

method. However, suppose you had a phone book and you were looking up Prof. Zarnett’s phone number. You 

would not open the book in the middle, determine that ‘Z’ falls after ‘M’, and then jump half-way towards ‘Z’ again. 

Instead, you would make an educated guess as to how far to jump. Similarly, if you were searching a sorted array of 

size n, where array[103] == 5.5 and array[999] == 88.2, and you were searching for the entry containing 

19.7, the logical first choice would be calculate 
19.7 5.5

0.1714
88.3 5.5





 and then calculate 

k = 103 + round(0.1714*(999 - 103)); 

which works out to entry 257, which is approximately 17.14% into the array from the lower bound. Such a search is 

valid if the entries are approximately uniformly distributed, in which case the convergence time is O(ln(ln(n)); 

which is significantly faster than a binary search. This search is called an interpolation search. 

As an example of where such a search is valid, consider an array containing these sorted entries: 

0.224, 1.07, 1.93, 2.11, 3.30, 3.86, 3.96, 3.96, 4.12, 4.28, 4.55, 6.95, 7.31, 7.37, 7.50, 7.73, 8.00, 8.43, 9.45, 9.96 

Interpolation search, however, will perform significantly worse than binary search if the entries are: 

0.224, 1.07, 1.93, 2.11, 3.30, 3.86, 3.96, 3.96, 4.12, 4.28, 4.55, 6.95, 7.31, 7.37, 7.50, 7.73, 8.00, 8.43, 9.45, 996 

Why? 

Similarly, in finding a root on an interval [a, b], suppose f(a) = –0.00003 and f(b) = 0.00024. One may assume that 

the root is likely closer to a than it is to b: 

 

Rather than choosing the mid-point, it would be reasonable to choose a point closer to a. How much closer? If we 

find the interpolating linear polynomial, we can find the root of that interpolating polynomial: 

 

The interpolating polynomial is 

   
   

f b f a
x a f a

b a


 


 . 
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Finding the root simply requires us to equate this to zero and solve for x: 

   
   

   
   

 
   

 
   

0
f b f a

x a f a
b a

f b f a
x a f a

b a

b a
x a f a

f b f a

b a
x a f a

f b f a


  




  




  




 



 

The expression is a little awkward, so we can simplify it: 

       

   

   

   

f b a f a a f a b f a a f b a f a b

f b f a f b f a

   


 
. 

Thus, 

1. let 
   

   

f b a f a b
c

f b f a





, 

2. in the unlikely case that   0f c  , c is a root and we are finished, 

3. otherwise, 

a. if f(a) and f(c) have the same sign, update a as the a root is on the interval [c, b], 

b. otherwise, a root is on the interval [a, c]. 
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6.2.2.1 Error analysis 
In general, most functions will be either concave up or concave down at a root: having an inflection point at a root is 

unlikely. Thus, in general, only one end-point will be updated: 

 

Now, zooming in on a point very close to the root, we get the following image: 

 

Note that 
   

 1 f a
f r

h


  or 

 
   1

f a
h

f r


  and that the next approximation moves closer to the root by 

   f b f a

b r




 
 so 

  

 

f a r b

f b


  , so if the error was h, it is now  

 
   

  

 

 
   

   
 

 

1 1

1

1

f a f a r b

f bf r f r
h h

f a f b

r bf r

   
 
  

  
  

. 

You will note that 

   

   

1

1
f r

f b r b



 is a constant near the root, so the convergence is O(h). You will note that if 

 f b

r b
 is close to the slope at the derivative, we have faster convergence. Thus, one solution is to alternate between 

the bisection method and the secant method, the bisection method usually bring b closer to the root. 

6.2.2.2 Implementation issues 
Now, when we implement the secant method in C++, we need to know when to stop. 

Like with the bisection method, we will let the user can specify abs so that |f(x)| < abs. Additionally, we will return 

that end-point that is smaller. One problem is, however, that the interval will not shrink to zero; instead, in general, 

only one end-point will change from iteration to iteration. Consequently, we will stop if aprev – a < step and 

|f(a)| < abs or b – bprev < step and |f(b)| < abs specified by the user. Now, we don’t have to keep all approximations, 

only the current and the most previous approximation for each end-point. 
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6.2.2.3 Implementation in C++ 

We could now write an algorithm that finds such a root: 

#include <cassert> 
#include <stdexcept> 
#include <iostream> 
#include <limits> 
 
double bracketed_secant_method( double f( double x ), 
                      double a, double b, 
                      double eps_step, double eps_abs, 
                      unsigned int max_iterations ) { 
    assert( a < b ); 
    double fa{f(a)}; 
    double fb{f(b)}; 
    double f_min{std::min(std::abs(fa), std::abs(fb))}; 
    double a_prev{-std::numeric_limits<double>::infinity()}; 
    double b_prev{ std::numeric_limits<double>::infinity()}; 
    unsigned int iterations{0}; 
 
    if ( fa == 0.0 ) { 
        std::clog << "Number of iterations: 0" << std::endl; 
        return a; 
    } else if ( fb == 0.0 ) { 
        std::clog << "Number of iterations: 0" << std::endl; 
        return b; 
    } 
 
    if ( sign( fa ) == sign( fb ) ) { 
        throw std::invalid_argument( "f(a) and f(b) have the same sign." ); 
    } 
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    do { 
        ++iterations; 
 
        if ( iterations > max_iterations ) { 
            throw std::range_error( "Exceeded the maximum number of iterations" ); 
        } 
 
        double c{(fb*a - fa*b)/(fb - fa)}; 
        assert( (a <= c) && (c <= b) ); 
        double fc{f(c)}; 
        f_min = std::min( f_min, std::abs( fc ) ); 
 
        if ( fc == 0.0 ) { 
            std::clog << "Number of iterations: " << iterations << std::endl; 
            return c; 
        } else if ( sign( fa ) == sign( fc ) ) { 
            // 'f(a)' and 'f(c)' have the same sign 
            a_prev = a; 
            a = c; 
            fa = fc; 
        } else { 
            // 'f(c)' and 'f(b)' have the same sign 
            assert( sign( fc ) == sign( fb ) ); 
            b_prev = b; 
            b = c; 
            fb = fc; 
        } 
    } while ( ((a_prev - a >= eps_step) || (std::abs( fa ) >= eps_abs)) 
           && ((b - b_prev >= eps_step) || (std::abs( fb ) >= eps_abs))  ); 

 
    std::clog << "Number of iterations: " << iterations << std::endl; 
 
    return ( std::abs( fa ) < std::abs( fb ) ) ? a : b; 
} 
 

We can test this 

std::cout << "Secant method" << std::endl; 
std::cout << bracketed_secant_method( std::cos, 1.0, 2.0, 1e-6, 1e-6, 100 ) 
          << std::endl; 
std::cout << bracketed_secant_method( y, 0.0, 0.5, 1e-6, 1e-6, 100 ) << std::endl; 
 

If we run this, we get the output: 

Number of iterations: 3 
1.570796325773051 
Number of iterations: 12 
0.4600002580872375 
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6.2.3 Newton’s method 
You learned Newton’s method in first year, and we introduced the topic on root finding by describing how we came 

up with the technique by using a first-order Taylor series to get the next approximation of the root to be 

 
   

1

1 1

1

n

n n

n

f x
x x

f x







  . 

We will now perform an error analysis on Newton’s method. Now, from the Taylor series, let us assume that x is a 

value near a root r. In this case, we have: 

             
21 21

2
f r f x f x r x f r x       

where r x  . Under the assumption that r is a root, we have that the left-hand side of this equation is zero: 

           
21 21

0
2

f x f x r x f r x     . 

Solving for r, we have 

           

 
   

   
   

   

 
   

   
   

 

22 1

2
2

1 1

2
2

1 1

1

2

1

2

1

2

f x f r x f x r x

f x f
r x r x

f x f x

f x f
r x r x

f x f x







    

    

   

 

Therefore, as an approximation to r, the error of x is r – x, but this equation indicates that the error of 
 

   1

f x
x

f x
  as 

an approximation to r is 

   
   

 
2

2

1

1

2

f
r x

f x


  . In the vicinity of the root, 

   
   

2

1

1

2

f

f x


  will be reasonably constant 

and reasonable in size so long as we do not have a double or higher-order root (in which case, the denominator will 

be close to zero). If r – x is sufficiently small, then  
2

r x  will again be smaller. 
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For example, consider the function y(t) = 2.3 e
–t

 – 5.0t e
–t

. This is a solution to a 2
nd

-order initial value. We note that 

y(0) = 2.3, and y(0.5) < 0 (why?). Thus, there must be a root and it is likely in the vicinity of t = 0.5. Let us try 

Newton’s method. The sequence of approximations is 

0.5, 0.4615384615384615, 0.4600023632281697, 0.4600000000055849, 0.4600000000000001, 0.4600000000000000 

Approximation Error Error squared 

0.5 0.04 0.0016 

0.4615384615384615 0.0015384615384615 0.000002367 

0.4600023632281697 0.0000023632281697 0.000000000005585 

0.4600000000055849 0.0000000000055849  

 

Now, at the root, the ratio 

   
   

2

1

0.461
1

2 0.46

f

f
    exactly. 

Now, suppose you want to find the first root of the response y(t) = 1.2 e
–t

cos(t) – 3.7 e
–t

sin(t). We know the solution 

is in the vicinity of 0.3, so we will start with that value: 

Approximation Error Error squared 

0.3 –0.0136206522166983 0.0001855 

0.3134384429127443 –0.0001822093039540 0.00000003320 

0.3136206190245318 –0.0000000331921665 0.00000000000001102 

0.3136206522166972 –0.0000000000000011  
 

6.2.3.1 Implementation issues 
Now, when we implement Newton’s method in C++, we need to know when to stop. First, there may be no root, so 

we should allow the user to specify a maximum number of iterations. 

Next, how do we know when to stop? First, because we are assuming that we are looking for a root of a function f, 

then if we have an approximation to a root x, then |f(x)| must be small, so we allow the user to specify this constraint: 

the user can specify abs so that |f(x)| < abs. 

Another problem is we want to be close to the root, but we are simply creating a sequence of approximations: how 

do we know when we are close enough to the root? To solve this, we will say that we are close enough to the root if 

the distance between the current approximation and the previous approximation is close; that is, |xk – xk – 1| < step for 

an step specified by the user. Now, we don’t have to keep all approximations, only the current and the most previous 

approximation. 

Another issue with Newton’s method is that we do not have the derivative. There are three ways of getting the 

derivative: 

1. Having the user provide a second function that returns the derivative of the first function for which we are 

finding the root. 

2. Approximating the derivative using the techniques we saw previously. 

3. Automatic differentiation: the algorithm means of taking one function definition and creating a new 

function definition that returns the derivative of the first. 
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6.2.3.2 Implementation in C++ 
Implementing Newton’s method in C++. 

#include <cassert> 
#include <stdexcept> 
#include <iostream> 
 
double newtons_method( double  f( double x ), 
                       double df( double x ), 
                       double x, 
                       double eps_step, double eps_abs, 
                       unsigned int max_iterations ) { 
    double fx{f(x)}; 
    double x_prev; 
 
    if ( fx == 0.0 ) { 
        std::clog << "Number of iterations: 0" << std::endl; 
        return x; 
    } 
 
    unsigned int iterations{0}; 
 
    do { 
        ++iterations; 
 
        if ( iterations > max_iterations ) { 
            throw std::range_error( "Exceeded the maximum number of iterations" ); 
        } 
 
        x_prev = x; 
        x = x - fx/df( x ); 
        fx = f(x); 
         
        if ( fx == 0.0 ) { 
            std::clog << "Number of iterations: " << iterations << std::endl; 
            return x; 
        } 
    } while ( (std::abs(x – x_prev) >= eps_step) 
           && (std::abs( fx ) >= eps_abs) ); 
 
    std::clog << "Number of iterations: " << iterations << std::endl; 
 
    return x; 
} 
 

  



2019-02-05 

15 

 

We can include in our test above one for Newton’s method, including the lines 

std::cout << "Newton's method" << std::endl; 
std::cout << newtons_method( std::cos, dcos, 1.5, 1e-6, 1e-6, 100 ) << std::endl; 
std::cout << newtons_method( y, dy, 0.5, 1e-6, 1e-6, 100 ) << std::endl; 
 

The output is now 

Number of iterations: 3 
1.570796326794897 
Number of iterations: 4 
0.46 

 

Note that both of these answers are much more accurate than the bisection method, but both  
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6.2.4 The secant method 
Given a function f(x), if you do not know the derivative, it is not possible to apply Newton’s method, but suppose 

you have two approximations to the root x0 and x1. We will assume that x1 is a better approximation of the root, 

meaning that |f(x1)| < |f(x0)|, and if this is not true, just swap the two values. 

 Finding a line that passes through these two points allows you to find a line that has a root of that interpolating line. 

That root could be a better approximation of the root: 

   

   
0 1 1 0

2

1 0

x f x x f x
x

f x f x





. 

At this point, we can continue using x1 and x2. In general, we set 

   

   
2 1 1 2

1 2

k k k k

k

k k

x f x x f x
x

f x f x

   

 





, 

and we continue iterating. Unlike the bracketed secant method, here we just continue using the last two 

approximations to find the next approximation. The issues here are the same as those for Newton’s method: the 

sequence may not converge even if a root exists, whereas with the bracketed secant method, the method is 

guaranteed to converge. 

To give two examples, consider the function f(x) = x
2
 – 10. This has a root close to x = 3, so let us start with x0 = 3 

and x1 = 3.1. We now iterate: 

   

   
2

3 3.1 3.1 3

3.1
3.16393442622950

3
8

f f
x

f f


 


. 

Next, we continue with x1 and x2, to calculate 

   

   
3

3.1 33.163934426229508 3.163934426229508
3.1622611881706

.1

3.1
35

3.163934426229508

f f
x

f f


 


 

If we continue iterating, we get 

6

4

5

7

3.162277655854531

 3.162277660168391

3.162277660168380

3.162277660168380

x

x

x

x









 

After this, if we were to apply one more step, the denominator would be zero, in which case x8 would be calculated 

as a floating-point infinity; however, at this point, we can stop because the last two approximations are equal.  

Now, one of the issues with the bracketed secant method, and that which forces it to execute in O(h), is that as one 

end-point of the interval gets closer to the root, the other end-point remains fixed. In this case, both points are 

always the best approximations of the root, so the rate of convergence is faster: it is O(h

) where  is the golden ratio 

5 1
1.6180339887498950

2



   . We will not prove this in this course. 
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6.2.5 Examples 
We will look at how each of these methods works at finding a root of the following two functions: 

1. f(x) = x
2
 – 2 

2. y(t) = 6.535 e
–3.193t

 cos(1.842t) – 1.038 e
–3.193t

 sin(1.842t) 

The first function has a root on the interval [1, 2] and the second has a root on the interval [0, 1]. Plots of these 

functions are shown in . 

         

Figure 1. Plots of f(x) on [1, 2] and y(t) on [0, 1]. 
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6.2.5.1 The bisection method 
For the quadratic polynomial f, if we start with the interval [1, 2], with the bisection method, we get this sequence of 

approximations: 

n an f(an) bn f(bn) cn f(cn) 

 1 –1 2 2 1.5   0.25 

1 1 –1 1.5 0.25 1.25 –0.4375 

2 1.25 –0.4375 1.5 0.25 1.375 –0.1094 

3 1.375 –0.1094 1.5 0.25 1.4375   0.06641 

4 1.375 –0.1094 1.4375 0.06641 1.40625 –0.02246 

5 1.40625 –0.02246 1.4375 0.06641 1.421875   0.02173 

6 1.40625 –0.02246 1.421875 0.02173 1.4140625 –0.0004272 

7 1.4140625 –0.0004272 1.421875 0.02173 1.41796875   0.01064 

8 1.4140625 –0.0004272 1.41796875 0.01064 1.416015625   0.005100 

9 1.4140625 –0.0004272 1.416015625 0.005100 1.4150390625   0.002336 

10 1.4140625 –0.0004272 1.4150390625 0.002336 1.41455078125   0.0009539 

11 1.4140625 –0.0004272 1.41455078125 0.0009539 1.414306640625   0.0002633 

12 1.4140625 –0.0004272 1.414306640625 0.0002633 1.4141845703125 –0.00008200 

13 1.4141845703125 –0.00008200 1.414306640625 0.0002633 1.41424560546875   0.00009063 

14 1.4141845703125 –0.00008200 1.41424560546875 0.00009063 1.414215087890625   0.000004315 

15 1.4141845703125 –0.00008200 1.414215087890625 0.000004315 1.414199829101562 –0.00003884 

16 1.414199829101562 –0.00003884 1.414215087890625 0.000004315 1.414207458496094 –0.00001726 

17 1.414207458496094 –0.00001726 1.414215087890625 0.000004315 1.414211273193360 –0.000006475 

18 1.414211273193360 –0.000006475 1.414215087890625 0.000004315 1.414213180541992 –0.000001080 

19 1.414213180541992 –0.000001080 1.414215087890625 0.000004315 1.414214134216308   0.000001617 

20 1.414213180541992 –0.000001080 1.414214134216308 0.000001617   

 

Because the initial width of the interval was 1, after 20 iterations, the width of the interval is 2
–20

, so the maximum 

error is 9.537 x 10
–7

. As |f(a)| < |f(b)| with our last step, we will approximate the root with x = 1.414213180541992. 

The correct solution to 20 digits is 1.4142135623730950488. 

For the function y, if we start with the interval [0, 1], with the bisection method, we get this sequence of 

approximations: 

n an y(an) bn y(bn) cn y(cn) 

 0 6.535 1 –0.1129 0.5   0.6336 

1 0.5 0.6336 1 –0.1129 0.75   0.01917 

2 0.75 0.01917 1 –0.1129 0.875 –0.07983 

3 0.75 0.01917 0.875 –0.07983 0.8125 –0.04115 

4 0.75 0.01917 0.8125 –0.04115 0.78125 –0.01408 

5 0.75 0.01917 0.78125 –-0.01408 0.765625   0.001719 

6 0.765625 0.001719 0.78125 –0.01408 0.7734375 –0.006381 

7 0.765625 0.001719 0.7734375 –0.006381 0.76953125 –0.002382 

8 0.765625 0.001719 0.76953125 –0.002382 0.767578125 –0.0003444 

9 0.765625 0.001719 0.767578125 –0.0003444 0.7666015625   0.0006839 

10 0.7666015625 0.0006839 0.767578125 –0.0003444 0.76708984375   0.0001690 

11 0.76708984375 0.0001690 0.767578125 –0.0003444 0.767333984375 –0.00008792 

12 0.76708984375 0.0001690 0.767333984375 –0.00008792 0.7672119140625   0.00004048 

13 0.7672119140625 0.00004048 0.767333984375 –0.00008792 0.76727294921875 –0.00002373 

14 0.7672119140625 0.00004048 0.76727294921875 –0.00002373 0.767242431640625   0.000008367 

15 0.767242431640625 0.000008367 0.76727294921875 –0.00002373 0.7672576904296875 –0.000007685 

16 0.767242431640625 0.000008367 0.7672576904296875 –0.000007685 0.7672500610351563   0.0000003411 

17 0.7672500610351563 0.0000003411 0.7672576904296875 –0.000007685 0.767253875732422 –0.000003672 

18 0.7672500610351563 0.0000003411 0.767253875732422 –0.000003672 0.7672519683837892 –0.000001665 

19 0.7672500610351563 0.0000003411 0.7672519683837892 –0.000001665 0.7672510147094728 –0.0000006621 

20 0.7672500610351563 0.0000003411 0.7672510147094728 –0.0000006621   

 

Because the initial width of the interval was 1, after 20 iterations, the width of the interval is 2
–20

, so the maximum 

error is 9.537 x 10
–7

. As |y(a)| < |y(b)| with our last step, we will approximate the root with t = 0.7672500610351563. 

The correct solution to 20 digits is 0.76725038526760903865 
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6.2.5.2 Bracketed secant method 
For the quadratic polynomial f, if we start with the interval [1, 2], with the bracketed secant method, we get this 

sequence of approximations: 

n an f(an) bn f(bn) cn f(cn) 

 1 –1 2 2 1.333333333333333 –2.222 × 10
–1

 
1 1.333333333333333 –2.222 × 10

  –1
 2 2 1.4 –4.000 × 10

–2
 

2 1.4 –4.000 × 10
  –2

 2 2 1.411764705882353 –6.920 × 10
–3

 
3 1.411764705882353 –6.920 × 10

  –3
 2 2 1.413793103448276 –1.189 × 10

–3
 

4 1.413793103448276 –1.189 × 10
  –3

 2 2 1.414141414141414 –2.041 × 10
–4

 
5 1.414141414141414 –2.041 × 10

  –4
 2 2 1.414201183431953 –3.501 × 10

–5
 

6 1.414201183431953 –3.501 × 10
  –5

 2 2 1.414211438474870 –6.007 × 10
–6

 
7 1.414211438474870 –6.007 × 10

  –6
 2 2 1.414213197969543 –1.031 × 10

–6
 

8 1.414213197969543 –1.031 × 10
  –6

 2 2 1.414213499851323 –1.768 × 10
–7

 
9 1.414213499851323 –1.768 × 10

  –7
 2 2 1.414213551646055 –3.034 × 10

–8
 

10 1.414213551646055 –3.034 × 10
  –8

 2 2 1.414213560532626 –5.206 × 10
–9

 
11 1.414213560532626 –5.206 × 10

  –9
 2 2 1.414213562057320 –8.931 × 10

–10
 

12 1.414213562057320 –8.931 × 10
–10

 2 2 1.414213562318917 –1.532 × 10
–10

 
13 1.414213562318917 –1.532 × 10

–10
 2 2 1.414213562363800 –2.629 × 10

–11
 

14 1.414213562363800 –2.629 × 10
–11

 2 2 1.414213562371500 –4.511 × 10
–12

 
15 1.414213562371500 –4.511 × 10

–12
 2 2 1.414213562372821 –7.740 × 10

–13
 

16 1.414213562372821 –7.740 × 10
–13

 2 2 1.414213562373048 –1.328 × 10
–13

 
17 1.414213562373048 –1.328 × 10

–13
 2 2 1.414213562373087 –2.278 × 10

–14
 

18 1.414213562373087 –2.278 × 10
–14

 2 2 1.414213562373094 –3.909 × 10
–15

 
19 1.414213562373094 –3.909 × 10

–15
 2 2 1.414213562373095 –6.707 × 10

–16
 

20 1.414213562373095 –6.707 × 10
–16

 2 2   

 

Notice that because the function is concave up on the interval [1, 2] and f(b) > 0, the value b does not change. After 

20 iterations, we will approximate the root with x = 1.414213562373095, which is correct to all significant digits. 

The correct solution to 20 digits is 1.4142135623730950488. 
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For the function y, if we start with the interval [0, 1], with the bracketed secant method, we get this sequence of 

approximations: 

n an y(an) bn y(bn) cn y(cn) 
 0 6.535 1 –1.129 × 10

–1
 0.9830152048905029 –1.110 × 10

–1
 

1 0 6.535 0.9830152048905029 –1.110 × 10
–1

 0.9665986010737283 –1.085 × 10
–1

 
2 0 6.535 0.9665986010737283 –1.085 × 10

–1
 0.9508145012780233 –1.054 × 10

–1
 

3 0 6.535 0.9508145012780233 –1.054 × 10
–1

 0.9357196149741421 –1.018 × 10
–1

 
4 0 6.535 0.9357196149741421 –1.018 × 10

–1
 0.9213616313420384 –9.779 × 10

–2
 

5 0 6.535 0.9213616313420384 –9.779 × 10
–2

 0.9077781438292655 –9.333 × 10
–2

 
6 0 6.535 0.9077781438292655 –9.333 × 10

–2
 0.8949959773563069 –8.855 × 10

–2
 

7 0 6.535 0.8949959773563069 –8.855 × 10
–2

 0.8830309474295765 –8.352 × 10
–2

 
8 0 6.535 0.8830309474295765 –8.352 × 10

–2
 0.8718880464174520 –7.832 × 10

–2
 

9 0 6.535 0.8718880464174520 –7.832 × 10
–2

 0.8615620204076564 –7.305 × 10
–2

 
10 0 6.535 0.8615620204076564 –7.305 × 10

–2
 0.8520382741857717 –6.776 × 10

–2
 

11 0 6.535 0.8520382741857717 –6.776 × 10
–2

 0.8432940245117312 –6.254 × 10
–2

 
12 0 6.535 0.8432940245117312 –6.254 × 10

–2
 0.8352996140314371 –5.745 × 10

–2
 

13 0 6.535 0.8352996140314371 –5.745 × 10
–2

 0.8280198993490837 –5.254 × 10
–2

 
14 0 6.535 0.8280198993490837 –5.254 × 10

–2
 0.8214156353445713 –4.785 × 10

–2
 

15 0 6.535 0.8214156353445713 –4.785 × 10
–2

 0.8154447914279704 –4.341 × 10
–2

 
16 0 6.535 0.8154447914279704 –4.341 × 10

–2
 0.8100637516059210 –3.924 × 10

–2
 

17 0 6.535 0.8100637516059210 –3.924 × 10
–2

 0.8052283667804445 –3.536 × 10
–2

 
18 0 6.535 0.8052283667804445 –3.536 × 10

–2
 0.8008948429125466 –3.177 × 10

–2
 

19 0 6.535 0.8008948429125466 –3.177 × 10
–2

 0.7970204614756886 –2.846 × 10
–2

 
20 0 6.535 0.7970204614756886 –2.846 × 10

–2
   

 

Notice that because the function is concave up on the interval [0, 1] and y(a) > 0, the value a does not change. After 

20 iterations, we will approximate the root with t = 0.7970204614756886, which unfortunately only correct to the 

first digit, as the correct solution to 20 digits is 0.76725038526760903865. 

This is because in this example, 

   
 

 

1

0.1235
y r

y b

r b





, so with each iteration, the error is only reduced by a factor 

of 0.8765  times the previous error—making convergence much worse than even the bisection method. 

If we alternate between the bisection method and the bracketed false position method, we note that we get 

significantly faster convergence. 
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6.2.5.3 Alternating between bisection and the bracketed secant methods 
For the quadratic polynomial f, if we start with the interval [1, 2] and then alternate applying the bisection method 

and then the bracketed secant method, we get this sequence of approximations: 

n an f(an) bn f(bn) cn f(cn) 
 1 –1 2 2 1.5   2.500 × 10–1 

1 1 –1 1.5 2.500 × 10–1 1.4 –4.000 × 10–2 
2 1.4 –4.000 × 10–2 1.5 2.500 × 10–1 1.45   1.025 × 10–1 
3 1.4 –4.000 × 10–2 1.45 1.025 × 10–1 1.414035087719298 –5.048 × 10–4 
4 1.414035087719298 –5.048 × 10–4 1.45 1.025 × 10–1 1.432017543859649   5.067 × 10–2 
5 1.414035087719298 –5.048 × 10–4 1.432017543859649 5.067 × 10–2 1.414212445893591 –3.158 × 10–6 
6 1.414212445893591 –3.158 × 10–6 1.432017543859649 5.067 × 10–2 1.423114994876620   2.526 × 10–2 
7 1.414212445893591 –3.158 × 10–6 1.423114994876620 2.526 × 10–2 1.414213558870409 –9.907 × 10–9 
8 1.414213558870409 –9.907 × 10–9 1.423114994876620 2.526 × 10–2 1.418664276873514   1.261 × 10–2 
9 1.414213558870409 –9.907 × 10–9 1.418664276873514 1.261 × 10–2 1.414213562367592 –1.556 × 10–11 

10 1.414213562367592 –1.556 × 10–11 1.418664276873514 1.261 × 10–2 1.416438919620553   6.299 × 10–3 
11 1.414213562367592 –1.556 × 10–11 1.416438919620553 6.299 × 10–3 1.414213562373091 –1.224 × 10–14 
12 1.414213562373091 –1.224 × 10–14 1.416438919620553 6.299 × 10–3 1.415326240996822   3.148 × 10–3 
13 1.414213562373091 –1.224 × 10–14 1.415326240996822 3.148 × 10–3 1.414213562373095 –4.812 × 10–18 
14 1.414213562373095 –4.812 × 10–18 1.415326240996822 3.148 × 10–3   

 

Notice that because the function is concave up on the interval [1, 2] and f(b) > 0, the value b does not change when 

the bracketed secant method is used. After 14 iterations, we will approximate the root with x = 1.414213562373095, 

which is correct to all significant digits. The correct solution to 20 digits is 1.4142135623730950488. 

For the function y, if we start with the interval [0, 1], with the bracketed secant method, we get this sequence of 

approximations: 

n an y(an) bn y(bn) cn y(cn) 

 0 6.535 1 –1.129 × 10
–1

 0.5   6.336 × 10
–1

 

1 0.5 6.336 × 10
–1

 1 –1.129 × 10
–1

 0.9243747240645564 –9.869 × 10
–2

 

2 0.5 6.336 × 10
–1

 0.9243747240645564 –9.869 × 10
–2

 0.7121873620322782   6.894 × 10
–2

 

3 0.7121873620322782 6.894 × 10
–2

 0.9243747240645564 –9.869 × 10
–2

 0.7994514977621643 –3.055 × 10
–2

 

4 0.7121873620322782 6.894 × 10
–2

 0.7994514977621643 –3.055 × 10
–2

 0.7558194298972212   1.247 × 10
–2

 

5 0.7558194298972212 1.247 × 10
–2

 0.7994514977621643 –3.055 × 10
–2

 0.7684685780154039 –1.277 × 10
–3

 

6 0.7558194298972212 1.247 × 10
–2

 0.7684685780154039 –1.277 × 10
–3

 0.7621440039563125   5.460 × 10
–3

 

7 0.7621440039563125 5.460 × 10
–3

 0.7684685780154039 –1.277 × 10
–3

 0.7672701107964198 –2.075 × 10
–5

 

8 0.7621440039563125 5.460 × 10
–3

 0.7672701107964198 –2.075 × 10
–5

 0.7647070573763662   2.697 × 10
–3

 

9 0.7647070573763662 2.697 × 10
–3

 0.7672701107964198 –2.075 × 10
–5

 0.7672505447408864 –1.678 × 10
–7

 

10 0.7647070573763662 2.697 × 10
–3

 0.7672505447408864 –1.678 × 10
–7

 0.7659788010586263   1.343 × 10
–3

 

11 0.7659788010586263 1.343 × 10
–3

 0.7672505447408864 –1.678 × 10
–7

 0.7672503859136397 –6.796 × 10
–10

 

12 0.7659788010586263 1.343 × 10
–3

 0.7672503859136397 –6.796 × 10
–10

 0.7666145934861330   6.702 × 10
–4

 

13 0.7666145934861330 6.702 × 10
–4

 0.7672503859136397 –6.796 × 10
–10

 0.7672503852689191 –1.378 × 10
–12

 

14 0.7666145934861330 6.702 × 10
–4

 0.7672503852689191 –1.378 × 10
–12

 0.7669324893775260   3.348 × 10
–4

 

15 0.7669324893775260 3.348 × 10
–4

 0.7672503852689191 –1.378 × 10
–12

 0.7672503852676104 –1.398 × 10
–15

 

16 0.7669324893775260 3.348 × 10
–4

 0.7672503852676104 –1.398 × 10
–15

 0.7670914373225682   1.673 × 10
–4

 

17 0.7670914373225682 1.673 × 10
–4

 0.7672503852676104 –1.398 × 10
–15

 0.7672503852676090 –7.093 × 10
–19

 

18 0.7670914373225682 1.673 × 10
–4

 0.7672503852676090 –7.093 × 10
–19

   

 

Notice that because the function is concave up on the interval [0, 1] and y(a) > 0, the value a does not change when 

the bracketed secant method is used, but does change when the bisection method is used. After 18 iterations, we will 

approximate the root with t = 0.7672503852676090, which is correct to all 16 significant digits, as the correct 

answer to twenty digits is 0.76725038526760903865. 
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6.2.5.4 Newton’s method 
For the quadratic polynomial f, if we start with x0 = 1 with Newton’s method, we get the sequence of approximations 

n Approximation 

0 1.0 

1 1.500000000000000 

2 1.416666666666667 

3 1.414215686274510 

4 1.414213562374690 

5 1.414213562373095 

 

Thus, Newton’s method converges after five iterations. The correct solution to 20 digits is 1.4142135623730950488. 

For the transcendental function y, if we start with t0 = 0 with Newon’s method, we get the sequence of 

approximations 

n Approximation 

0 0 

1 0.2868964785751110 

2 0.4996228340749413 

3 0.6506384365763257 

4 0.6506384365763257 

5 0.7365774672714292 

6 0.7645413980528708 

7 0.7672271761263750 

8 0.7672503835477956 

9 0.7672503852676093 

10 0.7672503852676092 

11 0.7672503852676091 

12 0.7672503852676090 

13 0.7672503852676089 

14 0.7672503852676088 

15 0.7672503852676093 

 

Thus, Newton’s method iterates comes very close to the root after only nine iterations, but then cycles between six 

different values. The correct solution to 20 digits is 0.76725038526760903865, so t12 is the most accurate. 
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6.2.5.5 The secant method  
For the quadratic polynomial f, if we start with the approximations x0 = 2 and x1 = 1.5 and then apply the secant 

method, we get the sequence of approximations where the last approximation is correct to all digits. 

n Approximation 

0 2.0 

1 1.5 

2 1.428571428571429 

3 1.414634146341463 

4 1.414215686274510 

5 1.414213562688870 

6 1.414213562373095 

7 1.414213562373095 

 

The last two approximations are equal, so we are finished, and we approximate the root with the point 

x = 1.414213562373095, which is correct to all digits. 

For the function y, if we start with the approximations t0 = 0 and t1 = 0.5 and then apply the secant method, we get 

this sequence of approximations: 

n Approximation 

0 0 

1 0.5 

2 0.5536839616574416 

3 0.6694972590725908 

4 0.7246973534700393 

5 0.7566421605706841 

6 0.7659343609517854 

7 0.7672067353503918 

8 0.7672502022893107 

9 0.7672503852421088 

10 0.7672503852676093 

11 0.7672503852676091 

12 ∞ 

 

The last value occurs as calculating y(t11) – y(t10) results in a 0 in the denominator, causing the calculation to return a 

floating-point infinity. Thus, we would use t11 = 0.7672503852676091 to approximate the root of the function. 

  



2019-02-05 

24 

 

6.2.6 Summary of these methods 
The following table offers a summary of these four methods: 

Method Requirements 
Iteration step Rate of 

convergence 

Is convergence 

guaranteed? 

Bisection  
An interval [a, b] with f(a) 

having the opposite sign of f(b) 

Let 
2

a b
c


  and update whichever endpoint 

has the same sign as f(c). 

O(h) Yes 

Bracketed 

secant  

An interval [a, b] with f(a) 

having the opposite sign of f(b) 

Let 
   
   

af b bf a
c

f b f a





 and update whichever 

endpoint has the same sign as f(c). 

O(h) Yes 

Newton’s An initial approximation x0 Let 
 

   
1

1 1

1

k

k k

k

f x
x x

f x







  . O(h2) No 

Secant 
Two initial approximations x0 

and x1 with |f(x0)| > |f(x1)| 
Let 

   
   

2 1 1 2

1 2

k k k k

k

k k

x f x x f x
x

f x f x

   

 





. O(h) No 

 

6.2.7 Problems 
1. Apply one step of these four methods approximate a root of the function f(x) = x

3
 – 9 using reasonable initial 

intervals or points. 

2. For the bisection and secant methods, given an interval [a, b] that is small enough, we return a or b depending on 

whether |f(a)| < |f(b)| or |f(a)| > |f(b)|. Why is this choice reasonable? Draw a situation where a continuous function 

may never-the-less have the point we choose be the sub-optimal choice. 

3. For the secant and Newton’s method, explain why the technique may not converge (two reasons). 

4. Here is a plot of the hyperbolic tangent function (tanh). If you start with x0 = 1, Newton’s method converges to the 

root, but if you start with x0 = 1.5, the next two approximations of the root using Newton’s method are 

–3.508937463704951 and 275.5937484459173, so it is clearly not converging. 

On which interval must the initial point for Newton’s method be in order to converge to zero? What expression 

would you have to solve to find the end points of this interval? What happens if you start with one of the end-points 

of this interval as x0? You will note that once you get the equation, find a solution close to x = 1.1 by using two steps 

of Newton’s method. Recall that the derivative of tanh(x) is 1 – tanh
2
(x). 

5. We described six tools we will use for approximating solutions to various problems. What are the tools used for 

each of the bisection method, the bracketed secant method, Newton’s method and the secant method.  
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6.2.8 Newton’s method and fractals (aside) 
Normally, you would expect Newton’s method to converge to the root closest to the starting point. This is, however, 

not the case. If you start with an x0 that is in the complex plane and try to find a root of the polynomial 

z
3
 – 1, you know that the roots are at 

1 3
1,

2 2
j   . However, the following image shows all points that converge to 

the root at 1 in red, all points that ultimately converge to the root 
1 3

2 2
j   in green, and all points that converge 

to the root 
1 3

2 2
j   in blue. Nowhere is the boundary between these regions well defined—you can zoom in 

arbitrarily close, and the boundary continues to be as detailed as you see in this image. 

 

  



2019-02-05 

26 

 

6.3 Systems of non-linear equations 
Returning to solving a system of one non-linear equation, observe that the first-order Taylor series around the point 

xk is        1

k k kf x x x f x  . This is an equation of the tangent plane at the point xk. If we let k kx x x   , this 

becomes      1

k k kf x x f x , so we can find a solution to this by equating it to zero      1
0k k kf x x f x  , and 

finding a solution to this is 
 

   1

k

k

k

f x
x

f x
   . Substituting this back into our definition of k kx x x   , we have 

k kx x x  ; that is, 
 

   1

k

k

k

f x
x x

f x

 
   

 
 

 . This is the next approximation to the root, and we call this xk + 1. 

Now, suppose we have a system of two non-linear equations and two unknowns 

 

 

, 0

, 0

f x y

g x y




 

 and we have one approximation to a root (xk, yk). We can now write a Taylor series at this point: 

         

         

, , ,

, , ,

k k k k k k k k

k k k k k k k k

f x y x x f x y y y f x y
x y

g x y x x g x y y y g x y
x y

 
   

 

 
   

 

 

These are tangent planes at the point (xk, yk). Now, let us represent k kx x x    and k ky y y   , we have 

     

     

, , ,

, , ,

k k k k k k k k

k k k k k k k k

f x y x f x y y f x y
x y

g x y x g x y y g x y
x y

 
   

 

 
   

 

 

We can now equate these to zero, and we have 

     

     

, , ,

, , ,

k k k k k k k k

k k k k k k k k

x f x y y f x y f x y
x y

x g x y y g x y g x y
x y

 
    

 

 
    

 

 

This is a system of two linear equations and two unknowns: 

   

   

 

 

, ,
,

,
, ,

k k k k

k k k

k k k
k k k k

f x y f x y
x f x yx y

y g x y
g x y g x y

x y

  
       
     
        
 
  

. 

Once you solve this for the unknown vector 
k

k

x

y

 
 
 

, you can then update k kx x x   and k ky y y  . This will 

be our next approximation to the root. 
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For example, the two functions x
2
 + 2y – 1 and 3x + y

2
 – 2 have a simultaneous root at the point 

(x, y) = (0.6372755591552685, 0.2969399308516699) 

This root is shown as a yellow point in this graph of these two functions, with the first function shown in red and the 

second in blue. 

 

Suppose we have the approximation (x, y) = (0.75, 0.5) to this root. Neither function is zero at this point, for 

0.75
2
 + 2·0.5 – 1 = 0.5625 and 3·0.75 + 0.5

2
 – 2 = 0.5. Viewing both functions, we see that at this point, neither 

function is zero: 
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We can find a tangent plan at these points on both planes: 

 

As you can see on both these planes, there is a simultaneous root of these two planes. These two planes are defined 

by taking the Taylor series at the point (x, y) = (0.75, 0.5): 

2·0.75(x – 0.75) + 2(y – 0.5) + 0.5625 

3(x – 0.75) + 2·0.5(y – 0.5) + 0.5 

We can now substitute  

2·0.75x + 2y + 0.5625 = 0 

3x + 2·0.5y + 0.5 = 0 

and this defines a system of two equations and two unknowns 
1.5 2 0.5625

3 1 0.5

x

y

     
    

     
. Solving this, we get  

x = –0.09722222222222222, y = –0.2083333333333333 

Our next approximation for the root is therefore 

x = 0.75 – 0.09722222222222222, 0.5 + y = 0.5 – 0.2083333333333333 

Thus, our next approximation is (0.6527777777777778, 0.2916666666666667).  Note that this is significantly closer 

to the actual root (0.6372755591552685, 0.2969399308516699). The two functions evaluated at this point are much 

closer to zero: 

                       0.009452160493827160, 0.04340277777777778 

Compare and contrast these with 0.5625 and 0.5, and you can also see the point in the next image: 
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k xk f(xk) xk 

0 
0.75

0.5

 
 
 

 
0.5625

0.5

 
 
 

 
0.09722222222222222

0.2803333333333333

 
 
 

 

1 
0.6527777777777778

.2916666666660 6667

 
 
 

 
0.009452

0.04340

 
 
 

 
0.01551836303824815

0.005403962291942849

 
 
 

 

2 
0.6372594147395296

0.2970706289586095

 
 
 

 
0.0002408 

0.00002920

 
 
 

 
0.00001615090261970687

0.0001307021104443827

 
 
 


 

3 
0.6372755656421493

0.2969399268481651

 
 
 

 
0.0000000002609 

0.00000001708

 
 
 

  

 

Thus, with each step, you can see that we are approaching a simultaneous root of both of these functions with the 

actual root being at 
0.6372755591552685

0.2969399308516699

 
 
 

.  
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Now, assume we have a system of n non-linear equations in n unknowns, and we want to find a simultaneous root to 

all of these. In this case, let us use vector notation: 

1

2

n

x

x

x

 
 
 
 
 
 

x  

and thus we may write the n non-linear functions as 

 

 

 

 

1

2

n

f

f

f

 
 
 
 
 
 
 

x

x
f x

x

. 

We want to find where   f x 0  where 

0

0

0

 
 
 
 
 
 

0 . We now want to find a Taylor series at an initial point xk for each 

of the n functions: 

             

             

          

1 1 ,1 1 ,2 1 ,3 1 ,

1 2 3

2 2 ,1 2 ,2 2 ,3 2 ,

1 2 3

3 3 ,1 3 ,2 3 ,3

1 2 3

k k k k k k k k k k k k k n

n

k k k k k k k k k k k k k n

n

k k k k k k k k k k

n

f f x x f x x f x x f x x
x x x x

f f x x f x x f x x f x x
x x x x

f f x x f x x f x x f
x x x x

   
        
   

   
        
   

   
       
   

x x x x x

x x x x x

x x x x   

             

3 ,

,1 ,2 ,3 ,

1 2 3

k k k n

n k n k k k n k k k n k k k n k k k n

n

x x

f f x x f x x f x x f x x
x x x x



   
        
   

x

x x x x x

 

We can thus  

         

         

         

 

1 1 ,1 1 ,2 1 ,3 1 ,

1 2 3

2 2 ,1 2 ,2 2 ,3 2 ,

1 2 3

3 3 ,1 3 ,2 3 ,3 3 ,

1 2 3

0

0

0

k k k k k k k k k n

n

k k k k k k k k k n

n

k k k k k k k k k n

n

n k

f f x f x f x f x
x x x x

f f x f x f x f x
x x x x

f f x f x f x f x
x x x x

f

   
         
   

   
         
   

   
         
   





x x x x x

x x x x x

x x x x x

x        ,1 ,2 ,3 ,

1 2 3

0n k k n k k n k k n k k n

n

f x f x f x f x
x x x x

  
        

  
x x x x
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This is a system of linear equations: 

       

       

       

       

1 1 1 1

1 2 3

,1

2 2 2 2

,21 2 3

,3

3 3 3 3

1 2 3

,

1 2 3

k k k k

n

k

k k k k

kn

k

k k k k

n

k n

n k n k n k n k

n

f f f f
x x x x

x
f f f f

xx x x x

x
f f f f

x x x x

x

f f f f
x x x x

    
    
 

     
  

     
     
  
    

   
    

     

x x x x

x x x x

x x x x

x x x x

 

 

 

 

1

2

3

k

k

k

n k

f

f

f

f

  
 
 
  
 
 
   

x

x

x

x

. 

We write this as       
d

d
k k k k k    

f
J f x x x x f x

x
. We solve for 

kx  and then set 
1k k k  x x x . 

6.3.1 Problems 
1. Find a simultaneous root of the two equations x

2
 + 2y – 1 and 3x + y

2
 – 2 but now start with the two different 

points: x0 = –2.5 and y0 = –3 by applying one iteration of Newton’s method in two dimensions. 

2. Find a simultaneous root of the two equations x
3
 + 2y – 1 and 3x + y

3
 – 2 starting with each of the following pairs 

of initial points: 

x0 =   0.7, y0 =   0.4 

x0 = –1.4, y0 =   1.8 

x0 =   1.6, y0 = –1.4  

and in each case, apply one iteration of Newton’s method. You only need to set up the system of linear equations 

that must be solved, and you must know how to use that solution to find the points x1 and y1. 

As an aside: if you would like to solve a system of two equations and two unknowns, you can use Matlab or the GNU 

equivalent Octave. Go to the web site https://octave-online.net/ and to solve the system of 

3.2 1.5 9.6

1.5 4.7 8.0

x

y

     
    

     
, enter the statements: 

octave:1> format long          % print 16 digits of precision 

octave:2> [3.2 -1.5; 1.5 4.7] \ [9.6 -8.0]' 

3. What is the tangent plane to the function sin(x)cos(y) at the point (x, y) = (1, 1)? 

4. Starting with (x0, y0) = (1.5, 1.5), find a better approximation to the simultaneous root of the two expressions 

sin(x)cos(y) and cos(x)sin(y).  

https://octave-online.net/
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Appendix A: Statistical error 
In this course, we discuss numerical error; however, in future courses and throughout your career, you will also 

discuss errors associated with measurements. Let us look at solving a linear equation ax = b. If there are errors in 

both a and b, how does this affect the solution? 

Suppose that aa   and bb   represents one standard deviation. In this case, the solution is  

2 22 2

2

2 2 2

4 2

2 22 2

2 2 2 2

2 2

a b

a b

a b

a b

a b

bb b b b

a a a b a a aa

bb

a a a

b b b

a a a a b

b b

a a a b

 
 

 

 

 

        
           

        

  

  

   
     

   

  

Thus, each relative error has a proportional effect on the total error. 

For example, suppose that 3.8 0.4a    and 7.1 0.9b   . In this case, 

2 2
7.1 7.1 0.4 0.9

1.87 0.31
3.8 3.8 3.8 7.1

   
      

   
. 

Thus, the answer is likely on the range [1.56, 2.18]. 

This appendix is beyond the scope of this course. 
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